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A two-phase model is proposed for the steady heat exchange between a surface and 
a pseudoturbulent bed of dispersed material. Expressions are obtained for the 
temperature fields of the gaseous and solid phases. 

Processes of heat exchange in heterogeneous systems can be intensified through a transi- 
tion to the so-called pseudoturbulent mode of motion of the dispersed material. Therefore, 
the investigation of heat conduction and heat exchange in the pseudoturbulent mode of motion 
of a dispersed heat-transfer agent has great practical importance. This term "pseudoturbulent 
transfer" presumes a certain analogy between pulsation transferin continuous and dispersed 
media, although it is known that there is no physical similarity between turbulent and pseudo- 
turbulent transfer, since the nature of the pulsation motion in the two cases is entirely dif- 
ferent. The pseudoturbulent mode of motion of a dispersed material is observed with pulsa- 
tions of moderate velocity in apparatus containing moving, fluidized, and vibrationally 
fluidized beds, in devices containing mixers, etc. 

Heat exchange with a surface submerged in a mixed dispersed medium is usually calculated 
from empirical equations of the type 

q = ~w (~w - -  #~)" 

The drawbacks of such an approach are well known. Chief of them is the difficulty of deter- 
mining the heat flux under conditions different from those under which the empirical equa- 
tions for ~w were obtained. The designing of each new apparatus containing a dispersed bed 
requires preliminary experimental investigations. Such an empirical course is also unpromis- 
ing because the value of @~ remains indeterminate to one extent or another, since the tempera- 
ture profile far from the heat source is unknown. 

Various models of heat transfer in a dispersed (basically a fluidized) bed have been 
discussed before in [1-5]. The main drawback of the proposed models consisted in the use of 
the hard-to-determine time of stay of particles near the heat-exchange surface [1-4] or of 
the contact thermal resistance at the boundary [5] in them. Moreover, in these models it is 
assumed that the temperature field is localized near the heat-exchange surface, whereas in 
fact even a well mixed core of a bed can limit the heat flux from the wall. Such an approach 
can be justified in the case when the pseudoturbulent mixing is so well developed that the 
thermal resistance of the core in the bed can be neglected. However, to quantitatively esti- 
mate the conditions under which such a situation can set in one must first describe the total 
thermal resistance at the boundary and in the core of the bed. In particular, the following 
equation is widely used to calculate the effective thermal conductivity in the phenomenologi- 
cal theory of heat transfer in a turbulent stream: 

An equation of this kind can evidently also be used to describe the temperature field in 
a pseudoturbulent bed. At a sufficient distance from the heat-exchange boundary, neglecting 
the filtration component of transfer for simplicity, one can assume that the pseudoturbulent 
pulsation transfer of heat by particles plays the main role in the formation of the tempera- 
ture field. We assume that near the surface heat exchange occurs predominantly as a result 
of the interaction of the temperature field formed from the gaseous phase with the tempera- 
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Fig. i. Temperature distribution in a "pseudoturbu- 
lent" bed. Dashed lines) solid phase; solid lines) 
gaseous phase: i) A h = 2, %g/ls = 0.02; 2) v~ and 
0.02, respectively; 3) 1 and 0.02; 4) r and 0.01; 
5) r and 0.005; 6) r and 0.0025. 

ture field of the particles. Then the model of steady pseudoturbulent transfer in a dis- 
persed bed can be written mathematically in the form 

%g d2~g - - ~ * S  (i) 
dx 2 (@g -- % ) = O, 

~s ~ + ~*s (%-%)  : o. (2) 
dx 2 

Equation (I) characterizes the process of heat conduction of the gaseous phase and (2) char- 
acterizes that of the mixed solid phase. 

The system (1)-(2) will be solved with the following boundary conditions: 

:o; 
dx x=o (4) 

We write Eqs. (1)-(4) in the dimensionless form 

d20g 
dY ~ A~(0g--%) = 0 ,  (5) 

2 ~g (0g-- Op~ = 0, (6) d20~ + A h 
d Y  ~ 

%ly=o : 1; %Iy=L = O, (7) 

dOp Y=0 O; ~ O. 
dY = OP]F=L (8) 

The parameter Ah was obtained earlier in [6]. It was shown that in a dense bed the coef- 
ficient of interphase heat exchange A h = ~6(I -- e)Nu* displays the properties of a universal 
constant and is numerically equal to two. Evidently, there is no reason to assume that in 
pseudoturbulent beds of different types the value of the Nusselt number Nu* = a*d/Xef.g 
should undergo any significant change. We note that the quantity A h will change for pseudo- 
turbulent systems of different types, since it depends on the porosity ~ of the bed. 

From Eq. (5) we express 0p through 8g: 

0p= 

Substituting (9) into (6), we obtain 

The solution of Eq. 

1 dZO.g (9) 
dY 2 @ Og. 2 

A h 

" d ~ O g  --A 2 1 - r  . . . .  O. 
dy~ h dy2 

(10) has  t h e  form 
Og = C~ Jr- C2Y + C3 exp ]/-~ Y q- C~ exp (-- V-~-Y). 

(10) 

(ll) 
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Fig. 2. Dependence of dimensionless heat flux Nut 
at the wall on the ratio %g/ls: i) A h = 2; 2) /2;~ 

'3) 1. 

Substituting (ii) into (9), 
the solid phase, 

where 

The constants Ct, 
conditions (7) and (8). By substituting (ii) into (7) and (12) into (8) it is easy to 
ob tain 

C ~ = l +  ~ ~' 1 + 1 ~ , 
V~L ~.g exp(--2 g~L) ]/~Lexp(--2V~L) ~g 

it is easy to  obtain an expression for the temperature of 

~g (Z2) Og= C~ + C2Y--C3 - ~  exp ]/~ Y-- C~ ~ exp (--  ]/-~ Y), 

%g 

C2, Cs, and C~ appearing in Eqs. (ii)-(12) are found from the boundary 

(13)  

C3 = - -  C~ exp (-- 2 V~L), (14) 

)tg 
c= = (15) 

Cl = 1 - -  C S - -  C~,. (16) 

Let us determine the value of the dimensionless heat flux at the wall: 

Nug= - -  08g0F y=o " (17) 

Substituting (ii) into (17) and using (13)-(15), after simple transformations we obtain 

N u g = A h ( l +  l s  ~ l q - e x p  2Ah 1-Jr- ~ L • 

~s "~s - - exp  - - 2 A h  1 -t- -~-~- + (18) 

Zg +AhLexp(--2AhLr ~ , )  r  ~ , ]  �9 

Let  us a n a l y z e  Eq. (18) .  As Xs + ~ ( i d e a l  mix ing )  t h e  maximum v a l u e  o f  Nu in  a p s e u d o t u r b u -  
lent bed is equal to A h. h similar result was obtained earlier for nonsteady heat exchange 
between a surface and a bed of stationary dispersed material [7], as well as for heat exchange 
between a surface and a bed of mixed dispersed material [5]. The dependences calculated from 
Eqs. (ii), (12), and (22) with different values of the parameters A h and Xg/X s are presented 
in Figs. I and 2. 

From Fig. i, in which the temperature distributions are presented, it is seen that the 
temperatures of the gas and the solid phase are practically equalized at a distance of 
several particle diameters from the wall, i.e., interphase heat exchange between the gas and 
particles is localized near the heat-exchange surface. The length of the section of tempera- 
ture equalization depends on the parameter A h. For the same ratio Xg/ls this section is the 
larger, the smaller A h. 
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From the dependence of the dimensionless heat flux Nug at the wall on Ig/I s presented 
in Fig. 2 it is seen that heat exchange with the surface intensifies with an increase in A s . 
As A s + ~ the value of Nu approaches its maximum value. 

In the authors' opinion, the proposed model can be useful in the generalization of ex- 
perimental data on heat exchange in pseudoturbulent movingp fluidized, vibrationally fluidized, 
and other beds of dispersed material. But the proposed approach cannot yet be considered as 
the only possible one for the description of temperature fields in ~he continuous and dis- 
persed phases of a pseudoturbulent bed. 

NOTATION 

Ag, effective thermal conductivity of gaseous phase; Is, effective thermal conductivity 
of the mixed solid phase; ~, porosity; Am, molecular thermal conductivity; d, particle diam- 
eter; 0~, temperature of dispersed bed at a large distance from heat source; ~g, gas tempera- 
ture; ~p, particle temperature; ~w, wall temperature; x, current coordinate in-the direction 
perpendicular to the wall; l, bed thickness; q, heat flux; ~ coefficient of heat exchange 
between wall and pseudoturbulent bed of dispersed material; ~*, coefficient of interphase 
heat exchange; eg = ~g/$w, dimensionless gas temperature; 8p = ~p/#w, dimensionless particle 
temperature; Y = x/d, dimensionless coordinate; L = I/d, dimensionless bed thickness; Ah~ 
dimensionless coefficient of interphase heat exchange; Nug = ~d/% s, Nusselt number. 
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